

CRNSEC West/core07 April 18-20, 2007

Unusual Car Navigation Tricks: Injecting RDS-TMC Traffic Information Signals

Andrea Barisani Chief Security Engineer <andrea@inversepath.com> Daniele Bianco Hardware Hacker <daniele@inversepath.com>

http://www.inversepath.com

Copyright 2007 Inverse Path Ltd.

Introduction

DISCLAIMER:

All the scripts and/or commands and/or configurations and/or schematics provided in the presentation must be treated as examples, use the presented information at your own risk.

Copyright 2007 Inverse Path Ltd.

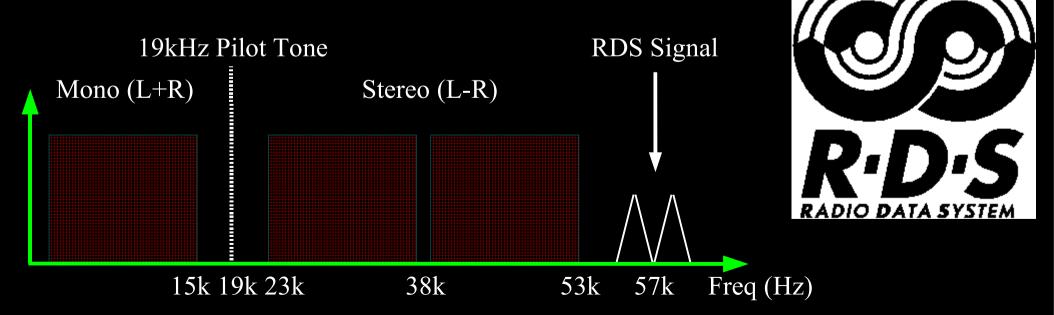
Andrea Barisani <andrea@inversepath.com>
Daniele Bianco <daniele@inversepath.com>

This work is released under the terms of the *Creative Commons Attribution-NonCommercial-NoDerivs License* available at http://creativecommons.org/licenses/by-nc-nd/3.0.

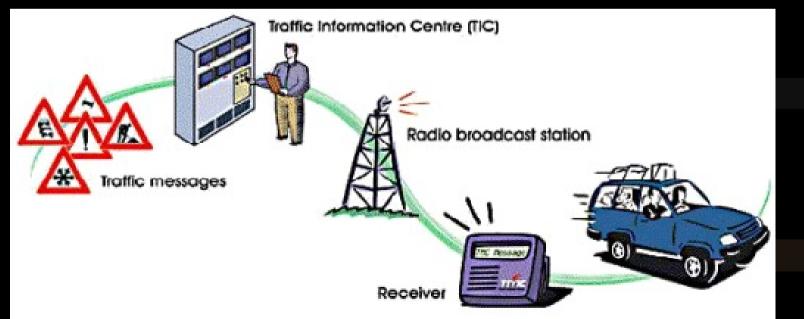
Copyright 2007 Inverse Path Ltd.

- Modern In-Car Satellite Navigation systems are capable of receiving dynamic traffic information
- One of the systems being used throughout Europe and North America is RDS-TMC (*Radio Data System – Traffic Message Channel*)
- One of the speakers bought a car featuring one of these SatNavs...he decided to play with it...just a little...
- We'll show how RDS-TMC information can be hijacked and falsified using homebrew hardware and software

Why bother ?


- First of all...hardware hacking is fun and Owning a car is priceless ;-P
- ok seriously...Traffic Information displayed on SatNav is implicitly trusted by drivers, nasty things can be attempted
- more important: chicks will melt when you show this...

- RDS is used for transmitting data over FM (1187.5 bits/s)
- Described in European Standard EN50067 (April 1998)
- Its most prominent function is showing FM Channel Name on the radio display, also used for Alternate Frequencies, Programme Type, News override, etc.



- First introduced around 1997 (Germany), implemented around Europe in the following years
 (Italy got it in 2004, Australia will get it in 2007)
- Described in ISO 14819-1

• TMC uses RDS for transmission over FM broadcasts

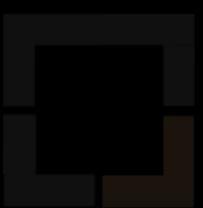
Copyright 2007 Inverse Path Ltd.

RDS-TMC Implementation

- Despite being a 10 year old protocol, implementation has been slow, SatNav systems have been fully supporting RDS-TMC only in the last few years
- implemented on most in-car SatNav shipped by the original manufacturer
- External and portable SatNav offer jacks for external FM receivers which add RDS-TMC capabilities
- RDS-TMC is available in both free and commercial services
- TMC can also be transmitted over DAB or satellite radio

Copyright 2007 Inverse Path Ltd.

RDS-TMC Terminal

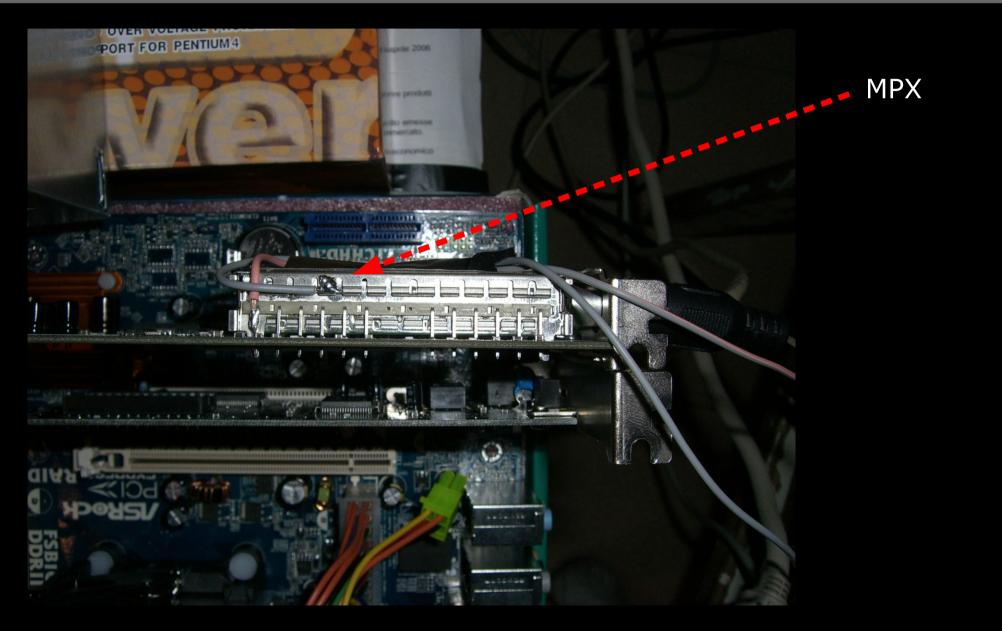

Copyright 2007 Inverse Path Ltd.

The Issue

- there's no form of authentication of the data (encryption is supported for commercial services but irrelevant to our goals, more on that later)
- We tested the feasibility of decoding and injecting arbitrary TMC messages against our "victim"
- Off-the-shelf components and cheap electronics have been used
- ...you'll be the judge of our results...

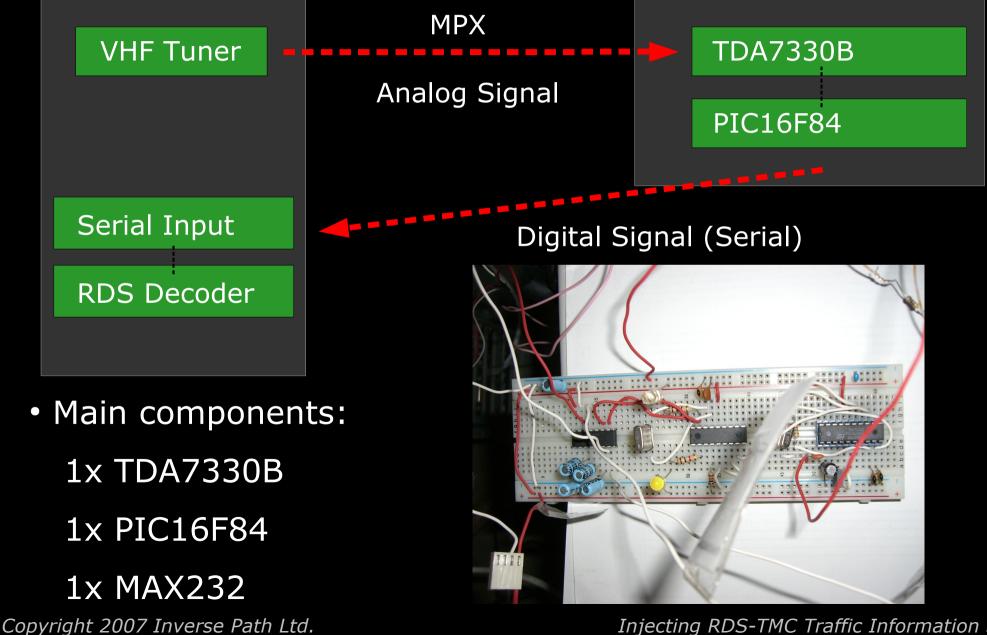
Copyright 2007 Inverse Path Ltd.

Sniffing RDS


- We need to get a "raw" FM signal (MPX), there's a number of tuners that provide an accessible pin for that
- We use the FM1216 module from Philips available on many PCI TV cards (*http://pvrhw.goldfish.org*)
- Once we have the signal we decode the RDS sub-carrier using a TDA7330B RDS Demodulator (which samples the 1.11875 kHz signal), a PIC for serial conversion and decoding software (sRDSd)
- Using custom hardware and software allowed us to fully understand the protocol and decode TMC (alternatively

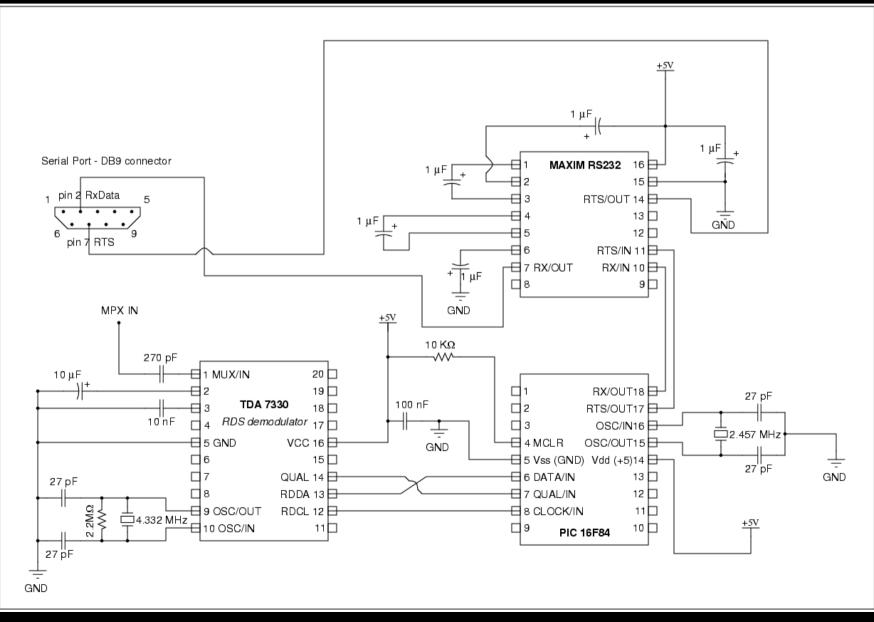
http://rdsd.berlios.de looks like the most promising project) Copyright 2007 Inverse Path Ltd. Injecting RDS-TMC Traffic Information Signals

Sniffing RDS



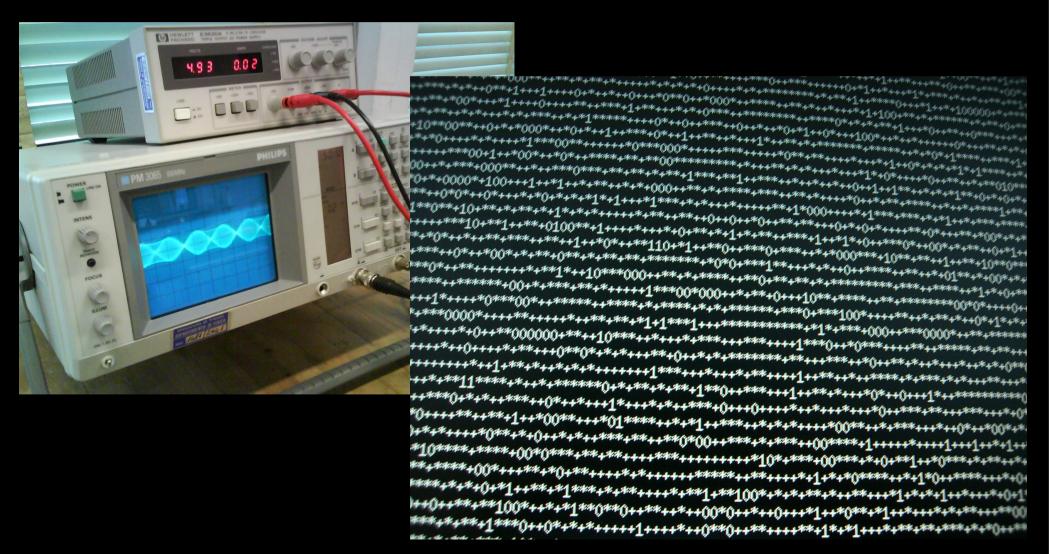
Copyright 2007 Inverse Path Ltd.

Sniffing RDS



Sniffing Circuit

Copyright 2007 Inverse Path Ltd.


- We program the PIC for converting RDS Demodulator data and send it to the serial port
- custom PIC programmer, a variation of the well known JDM one (http://www.semis.demon.co.uk/uJDM/uJDMmain.htm)
- output are 0 and 1, bad quality data is shown with * and + (either ignore sequences with bad data or replace them with 0 and 1 if you feel lucky)
- http://dev.inversepath.com/rds/pic_code.asm

The Output

cat /dev/ttyS0

Copyright 2007 Inverse Path Ltd.

Group structure (104 bits):		
Block 1 Block 2 Block 3 Block 4	PI code	= 16 bits
Block structure (26 bits):	Group code	= 4 bits
	в0	= 1 bit
	TP	= 1 bit
Block 1:	PTY	= 5 bits
PI code Checkword	Checkword	= 10 bits
Block 2:		
Group code B0 TP PTY <5 bits> C	heckword	

Block 1:						
PI code Checkword						
Block 2:						
Group code B0 TP PTY T F DP Checkword						
Block 3:	т	= 1 bit				
D PN Extent Event Checkword	F	= 1 bit				
	DP	= 3 bits				
Block 4:	D	= 1 bit				
Location Checkword	PN	= 1 bit				
	Extent	= 3 bits				
	Event	= 11 bits				
	Location	= 16 bits				

Injecting RDS-TMC Traffic Information Signals

= 10 bits

Checkword

- PI code => Programme Identification
- Group code => message type identification
- B0 => version code
- TP => Traffic Program
- PTY => Programme Type
- T, F, D => Multi Group messages
- DP => Duration and Persistence
- D => Diversion Advice
- PN => +/- direction
- Extent => event extension
- Event => event code (see also TMDD Traffic Management Data Dictionary)
- Location => location code (DAT Location Table TMCF-LT-EF-MFF-v06)

srdsd Simple RDS Decoder

- Our custom tool for RDS decoding:
 - ISC-style licensed
 - performs nearly full RDS-TMC (and basic RDS) decoding
 - text and HTML output with Google Map links of GPS data
 - http://dev.inversepath.com/rds/srdsd

```
Simple RDS-TMC Decoder 0.1 || http://dev.inversepath.com/rds
Copyright 2007 Andrea Barisani || <andrea@inversepath.com>
Usage: ../srdsd/srdsd [-h|-H|-P|-t] [-d <location db path>] [-p
<PI number>] <input file>
    -t display only tmc packets
    -H HTML output (outputs to /tmp/rds-<random>/rds-*.html)
    -p PI number
    -P PI search
    -d location db path
    -h this help
Note: -d option expects a DAT Location Table code according to
    TMCF-LT-EF-MFF-v06 standard (2005/05/11)
```

Copyright 2007 Inverse Path Ltd.

- We must "lock" parsing to the relevant PI
- Every FM Channel has its own code (google knows)
- You can guess the PI code by finding the most recurring
 - 16-bit string: # ./srdsd -P rds_dump.raw | tail

0010000110000000:	4140	(2180)		
100001100000001:	4146	(8601)		
000110000000101:	4158	(1805)		
1001000011000000:	4160	(90c0)		
000011000000010:	4163	(0c02)		
011000000010100:	4163	(6014)		
001100000001010:	4164	(300a)		
0100100001100000:	4167	(4860)		
1010010000110000:	4172	(a430)		
0101001000011000:	4185	(5218)		

./srdsd -p 5218 -d ~/loc_db/ rds_dump.raw

Copyright 2007 Inverse Path Ltd.

CAN secwest srdsd output – OA Group

TECHNICAL SECURITY SEMINAR

Got RDS message (frame 75) Programme Identification: 0101001000011000 (5218) Group type code/version: 0000/0 (0A - Tuning) Traffic Program: 1 Programme Type: 01001 (9 - Varied Speech) Decoded OA group: Traffic Announcement: 0 Music Speech switch: 0 Decoder Identification control: 100 (Dynamic Switch / PS char 1,2) Alternative Frequencies: 10101010, 10101111 (104.5, 105)Programme Service name: 0101001001010100 (RT) Collected PSN: RTL102.5 Raw dump Checkword Hex Data Block 1: | 0101001000011000 0000010100 5218 Block 2: | 0000010100101100 0010101101 052c Block 3: | 1010101010101111 1010100110 aaaf Block 4: | 0101001001010100 0100110101 5254

Copyright 2007 Inverse Path Ltd.

CAN secwest srdsd output – 8A Group

TECHNICAL SECURITY SEMINAR

```
Got RDS message (frame 76)
        Programme Identification: 0101001000011000 (5218)
        Group type code/version: 1000/0 (8A - TMC)
        Traffic Program: 1
        Programme Type: 01001 (9 - Varied Speech)
        Decoded 8A group:
                Bit X4: 0 (User message)
                Bit X3: 1 (Single-group message)
                Duration and Persistence: 000 (no explicit duration given)
                Diversion advice: 0
                Direction: 1 (-)
                Extent: 011 (3)
                Event: 00001110011 (115 - slow traffic (with average speeds Q))
                Location: 0000110000001100 (3084)
                Decoded Location:
                        Location code type: POINT
                        Name ID: 11013 (Sv. Grande Raccordo Anulare)
                        Road code: 266 (Roma-Ss16)
                        GPS: 41.98449 N 12.49321 E
                        Link:
 http://maps.google.com/maps?11=41.98449,12.49321&spn=0.3,0.3&g=41.98449,12.49321
```

Raw dump	Data	Checkword	Hex
Block 1:	0101001000011000	0000010100	5218
Block 2:	1000010100101000	1110000111	8528
Block 3:	0101100001110011	0001011001	5873
Block 4:	0000110000001100	0111000011	0c0c

Copyright 2007 Inverse Path Ltd.

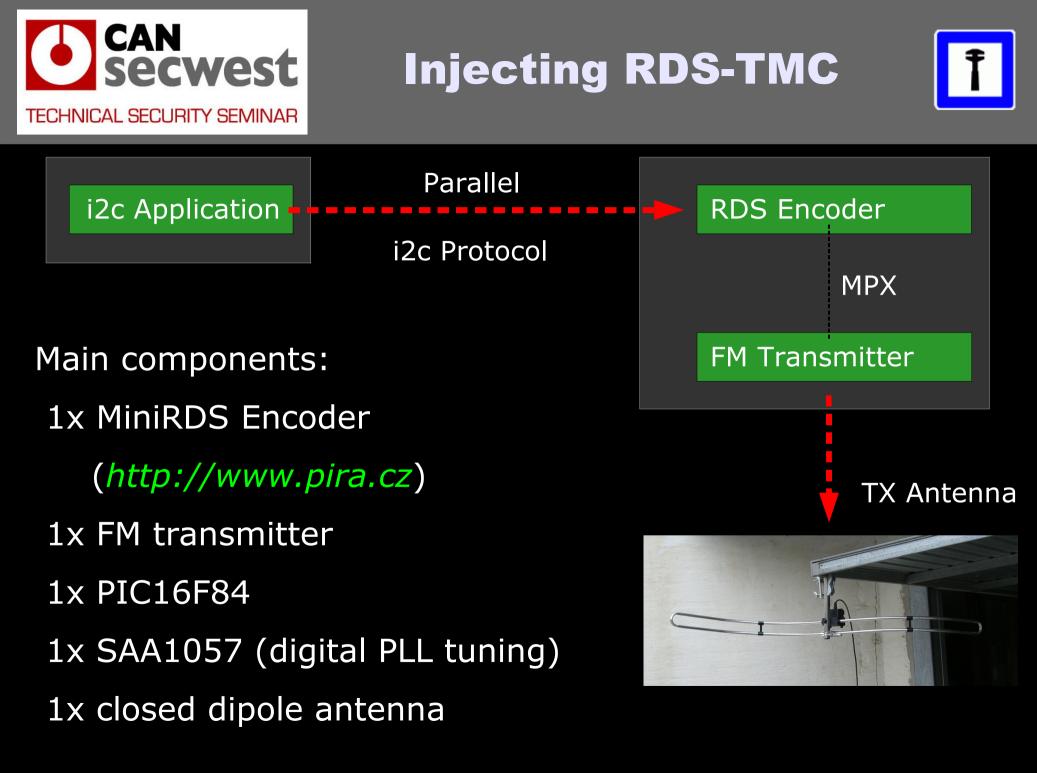
CAN secwest srdsd output – 3A Group

TECHNICAL SECURITY SEMINAR

Got RDS message (frame 181) Programme Identification: 0101001000011000 (5218) Group type code/version: 0011/0 (3A - ODA ID) Traffic Program: 1 Programme Type: 01001 (9 - Varied Speech) Decoded TMC Sys Info group (3A - AID 52550): Location Table Number: 000001 (1) Alternative Frequency bit: 1 Mode of Transmission: 0 International Scope: 1 National Scope: 0 Regional Scope: 0 Urban Scope: 0 AID: 1100110101000110 (52550) Raw dump Checkword Hex Data Block 1: | 0101001000011000 0000010100 5218 Block 2: | 0011010100110000 1111101000 3530 Block 3: | 000000001101000 0010011011 0068 Block 4: | 1100110101000110 1111001001 cd46

Copyright 2007 Inverse Path Ltd.

- We use a commercialy available RDS encoder (40\$ USD), but it's reasonable to build your own (we are working on it)
- i2c is being used for communicating with its chipset, we use our custom C application over the supplied client for being able to send different Group Types
- We set all parameters (PI, PTY, etc) + the remaining data (last 3 RDS Blocks in Hexadecimal)
- The checkword is automatically computed by the chipset
- http://dev.inversepath.com/rds/i2c_minirds.tar.gz



Injecting RDS-TMC

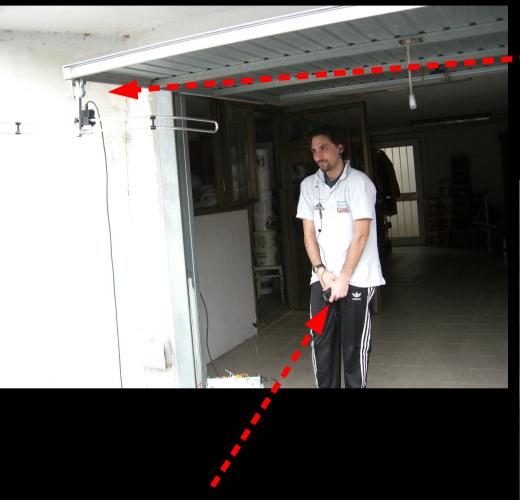
Copyright 2007 Inverse Path Ltd.

Injection Circuitry

Copyright 2007 Inverse Path Ltd.

Transmitting FM

- The FM transmitter can be tuned to arbitrary frequencies
- It's important to have a stable transmitter for data injection
- Long distances can be easily covered (but it might be desirable to keep it short enough to reach only the victim)



Copyright 2007 Inverse Path Ltd.

Transmitting FM

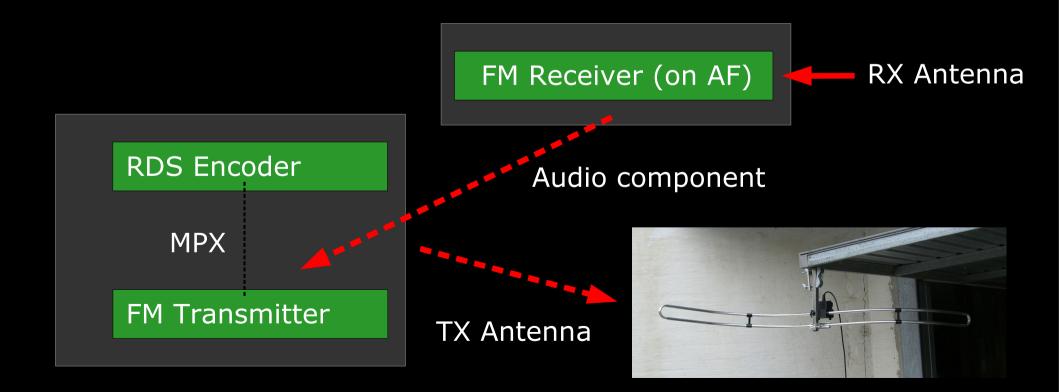
TX "The Sterilizer" Antenna

(Resistance is Futile)

Copyright 2007 Inverse Path Ltd.

Locking the SatNav Tuner

- RDS-TMC is detected using 3A Sys Info groups which specify the Location Table, the Scope of the service and timing settings
- Hijack existing channels:
 - 1. Find the frequency of a channel that provides RDS-TMC
 - 2. Obscure the channel and send 8A packets (3A not necessary) when SatNav locks on it (careful timing)
- Fake a FM broadcast using 3A groups:
 - 1. Find an unused frequency
 - 2. Transmit 3A groups continuosly + 8A packets


Copyright 2007 Inverse Path Ltd.

Option 1: Mix the audio component taken on the Alternate Frequency (AF) for the hijacked channel Option 2: Fake a new channel on an unused frequency

Copyright 2007 Inverse Path Ltd.

Attack 1: Standard Traffic Msgs

- We can create:
 - 1. Queues
 - 2. Bad Weather (Rain, Smog, Fog, Fresh Snow,...)
 - 3. Full Car Parks
 - 4. Overcrowded Service Areas (OMG!)
 - 5. Accidents
 - 6. Roadworks
 - ...and so on...
- Not particularly exciting but still nice...it gets better though...

Copyright 2007 Inverse Path Ltd.

Attack 1: Standard Traffic Msgs

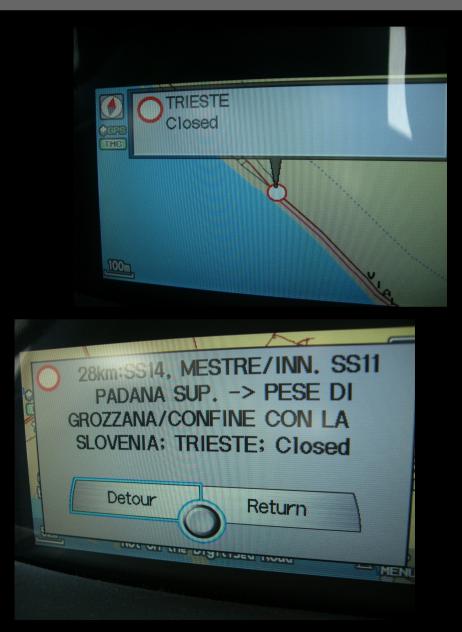
Queueing Traffic

Copyright 2007 Inverse Path Ltd.

Attack 2: Closing Roads

- We can close arbitrary roads, bridges and tunnels with a number of Events: Closed, No through traffic, Accidents
- The SatNav will pop-up the event (even if no diversion is specified on our model) and ask the user for a detour
- If the closed road is encountered during re-calculation of the route (which is a very common thing) it will be *silently* avoided
- this attack is also known as "keep your parents from reaching home"...

Copyright 2007 Inverse Path Ltd.



Attack 2: Closing Roads

Code 401 - Closed

Copyright 2007 Inverse Path Ltd.

Attack 2: Closing Roads

Normal route to home

Route avoiding the

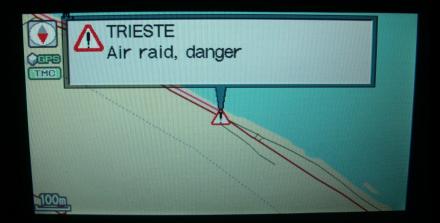
"Closed" Event

Copyright 2007 Inverse Path Ltd.

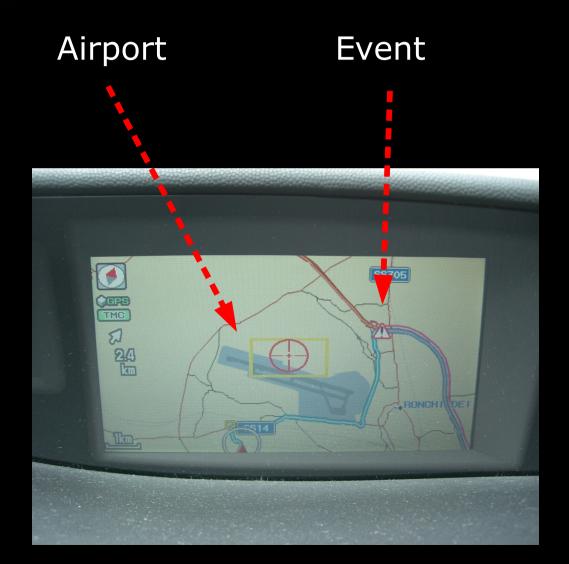
- The Event table supports a number of security related messages
- We doubt anyone ever used them so far
- They pose a very interesting target for social engineering purposes (Homeland Security would freak out)

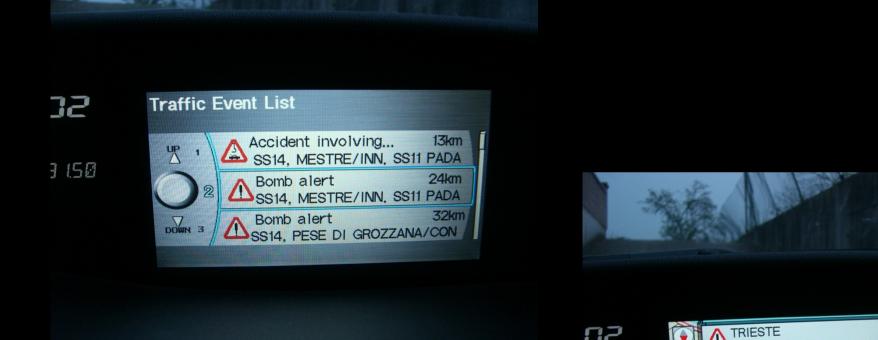
Code 1518 – Terrorist Incident

10, 17, 19, 20,


Copyright 2007 Inverse Path Ltd.

Code 1481 – Air raid, danger


Copyright 2007 Inverse Path Ltd.


Code 978 – Air crash

Copyright 2007 Inverse Path Ltd.

Code 1516 – Bomb alert

Copyright 2007 Inverse Path Ltd.

- Security messages can be pop-up, if they affect current route
- Video Clip time!

Code 1571

Security alert. Stationary traffic

Copyright 2007 Inverse Path Ltd.

Other funny messages

Code 1456 – Bull Fight (you never know...) Code 1560 – Delays due to parade

...and many more...(no you can't have a pony)

Copyright 2007 Inverse Path Ltd.

- On our Honda integrated SatNav we've seen that:
 - The PI is not associated to the frequency, any PI can be used on any frequency for hijacking
 - Total cancellation (Event: 2047, Location: 65535) is not honoured
 - Broadcast message (Location: 65535) is not honoured
 - Diversion bit is ignored for some categories and always assumed = 1
- We expect other SatNav systems to have similar or even more interesting issues

- TMC supports a very lightweight encryption for commercial services
- Described in ISO 14819-6
- It's used for signal discrimination rather than authentication
- Only the Location Code is encrypted
- It involves bitwise operations against a key
- The key can be trivially broken by sampling some data
- Terminals that support encryption are also expected to accept un-encrypted data, so injection is still possible

Copyright 2007 Inverse Path Ltd.

- RDS-TMC can be trivially injected
- Drivers don't tend to have any security awareness towards their SatNav, social engineering, forced detours and panic attacks are possible
- We don't think it's "*The End Of The World As We Know It"* but these systems should be authenticated considering their increased usage and expansion
- These technologies have a very long life span and "patching" is not easy
- We hope to increase awareness about these kind of problems

Copyright 2007 Inverse Path Ltd.

The Future

- TMC is also supported over DAB and satellite radio, it's harder to inject compared to FM but still possible
- TPEG (Transport Protocol Experts Group) is the new standard designed for replacing TMC. It supports encryption but it's still optional. (*http://tpeg.org*)
- GST (Global System for Telematics) is an impressive new architecture for delivering a number of services. It's backed up by many manufacturers and it will support PKI for billing and transport purposes. Adoption is many years away from now. (*http://gstforum.org*)

Copyright 2007 Inverse Path Ltd.

- Microsoft DirectBand (*http://www.directband.com*), used for MSN Direct, is another FM subcarrier channel for data transmission
- It has a larger bandwidth (15 times that of RDS) and full encryption
- Other than special wristwatches it's also been used on SatNav systems for traffic information

(http://garmin.msndirect.com)

• Closed standard, not available in Europe, looks very promising...we'd love to play with that too ;)

Copyright 2007 Inverse Path Ltd.

Thanks for listening! Questions?

(shameless plug) http://www.inversepath.com

Traffic Sign Images used with permission from http://gettingaroundgermany.home.att.net Thanks to Brian Purcell

Copyright 2007 Inverse Path Ltd.